Fourier methods

Lukas Palatinus
Institute of Physics
AS CR, Prague, Czechia
Outline

- Fourier transform:
 - mathematician‘s viewpoint
 - crystallographer‘s viewpoint
 - programmer‘s viewpoint

- Practical aspects
 - libraries, binding
 - sample code
Any (reasonably well behaved) function in one, two or more dimensions can be expressed as a sum (or integral) of basis functions:

\[f(x_1, x_2, \ldots x_n) = \sum g_i(x_1, x_2, \ldots x_n) \]

Not all bases are suitable for all functions. Smooth, bound functions varying relatively slowly in space (or time) may be very well approximated by a decomposition to constituting \textit{frequencies and their amplitudes}. This decomposition is called \textit{Fourier transform}. If the function is periodic, its decomposition has countably many components and is called a \textit{Fourier sum}. Otherwise the number of components may be infinite and the function is expressed by a Fourier integral.
Fourier sum in 1D:

\[f(x) = \sum_{n=0}^{\infty} d_n \cos(nx + \varphi_n) \]
Fourier transform – mathematician’s viewpoint
Fourier transform – mathematician’s viewpoint

wave 1: $\cos(x)$
wave 2: $2\cos(2x + 0.2)$
wave 3: $4.5\cos(3x + 1.6)$
wave 4: $3.8\cos(6x + 3.5)$
Fourier transform – mathematician‘s viewpoint

Fourier sum in 1D:

\[f(x) = \sum_{n=0}^{\infty} d_n \cos(nx + \varphi_n) \]

Using \(\cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b) \) we can get

\[f(x) = \sum_{n=0}^{\infty} [a_n \cos(nx) + b_n \sin(nx)] \]

where \(a_n = d_n \cos(\varphi_n) \), \(b_n = -d_n \sin(\varphi_n) \)
Fourier sum in 1D:

\[f(x) = \sum_{n=0}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right] \]

Euler’s formula:

\[\cos(nx) + i \sin(nx) = e^{inx} \]

Then:

\[f(x) = \sum_{n=0}^{\infty} \frac{a_n - ib_n}{2} \left[\cos(nx) + i \sin(nx) \right] + \]

\[+ \sum_{n=-\infty}^{0} \frac{a_{-n} + ib_{-n}}{2} \left[\cos(nx) + i \sin(nx) \right] = \]

\[= \sum_{n=-\infty}^{\infty} F_n e^{inx} \]

where \(F_n = d_n e^{i\varphi_n} \) and is obtained from \(F_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) e^{-inx} \, dx \)
Fourier transform — mathematician‘s viewpoint

Fourier sum in \(n \)D:

\[
f(\mathbf{r}) = \sum_{\mathbf{h}=0,0,...}^{\infty,\infty,...} \left[a_h \cos(\mathbf{h}.\mathbf{r}) + b_n \sin(\mathbf{h}.\mathbf{r}) \right] = \sum_{\mathbf{h}=-\infty,-\infty,...}^{\infty,\infty,...} F_h e^{i\mathbf{h}.\mathbf{r}}
\]

If the function is periodic in integer intervals, the factor 2\(\pi \) must be written explicitly:

\[
f(\mathbf{r}) = \sum_{\mathbf{h}=0}^{\infty} \left[a_h \cos(2\pi\mathbf{h}.\mathbf{r}) + b_h \sin(2\pi\mathbf{h}.\mathbf{r}) \right] = \sum_{\mathbf{h}=-\infty}^{\infty} F_h e^{2\pi i\mathbf{h}.\mathbf{r}}
\]
The physics of the diffraction is such that the amplitude and phase of the diffracted beams is (approximately) equal to the amplitude and phase of the Fourier coefficients of the scattering density:

$$F_h = \int \rho(r)e^{2\pi ih \cdot r} dV$$

Coefficients F_h are called structure factors.

Conversely, the electron density can be calculated as a Fourier summation of the structure factors.

$$\rho(r) = \frac{1}{V} \sum_{h=-\infty}^{\infty} F_h e^{-2\pi ih \cdot r}$$
F_{002}

$+$

F_{040}
Eight reflections (+ their symmetry equivalents) are enough to reproduce the main features of the density map.
In diffraction we can routinely measure the \textit{amplitude} of the structure factors, but very rarely the phases. Hence, the inverse transform

\[
\rho(r) = \sum_{h=-\infty}^{\infty} F_h e^{-2\pi i h \cdot r}
\]

cannot be directly performed

crystallographic phase problem
Phases and amplitudes

What part of information is carried by amplitudes and what by phases?

http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html
Phases and amplitudes

What part of information is carried by amplitudes and what by phases?

Amplitudes from duck
+ phases from cat

http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html
Phases and amplitudes

What part of information is carried by amplitudes and what by phases?

Amplitudes from cat
+ phases from duck
Fourier transform – programmer’s viewpoint

\[F_h = \int \rho(r)e^{2\pi i h \cdot r} dV \]

cannot be directly calculated, unless the scattering density is available analytically.

\[\rho(r) = \frac{1}{V} \sum_{h=-\infty}^{\infty} F_h e^{-2\pi i h \cdot r} \]

Cannot be calculated, because of the infinite sum.

Solution: sample the scattering density on a regular grid, creating an approximation of the real density with finite number of „parameters“.
Fourier transform – programmer's viewpoint
Aliasing: frequencies n and $n+kN$ make equivalent contribution to the discretized function
Fourier transform – programmer’s viewpoint
Fourier transform – programmer’s viewpoint
Fourier transform – programmer’s viewpoint

Aliasing: frequency $N/2$ has only one parameter (phase can be set to 0).
Fourier transform – programmer’s viewpoint

Fourier transform is in its general („naïve“) implementation a $O(N^2)$ operation.

In 1965, Cooley & Tukey published an algorithm for discrete Fourier transform with $O(N \log N)$ complexity – FFT.

First FFT algorithms operated best on grid sizes of the form 2^n. Modern algorithms do also prime-factor FFT.

It is, however, still useful to have grid sizes that can be factored to small prime factors.
Practical aspects
conventions

The sign of the phase factor and the normalization constant in the Fourier transform is a mere convention:

\[F_h = \int \rho(\mathbf{r}) e^{2\pi i \mathbf{h}.\mathbf{r}} dV \]
\[F_h = \frac{1}{V} \int f(x) e^{-2\pi i \mathbf{h}.\mathbf{r}} dV \]

\[\rho(\mathbf{r}) = \frac{1}{V} \sum_{h=-\infty}^{\infty} F_h e^{-2\pi i \mathbf{h}.\mathbf{r}} \]
\[f(\mathbf{r}) = \sum_{h=-\infty}^{\infty} F_h e^{2\pi i \mathbf{h}.\mathbf{r}} \]

Unfortunately, these conventions are opposite in crystallography and in most mathematical literature.

Be careful when using libraries or when you copy others' implementations!
Practical aspects
libraries, binding

There are many libraries that contain FFT functionality

http://www.fftw.org/speed/

3.0 GHz Intel Core Duo, Intel compilers, 64-bit mode
Practical aspects
libraries, binding

There are many libraries that contain FFT functionality

http://www.fftw.org/speed/

3.0 GHz Intel Core Duo, Intel compilers, 64-bit mode
Practical aspects
libraries, binding

FFTW3 – very fast, versatile, free FFT library.
Some features:

• Single and double precision routines
• Real-to-real, real-to-complex, complex-to-complex transforms
• Dedicated 1D, 2D, 3D and nD transforms
• Many different FFT algorithms available
• Options for automatic finding of the best algorithm
• In-place and out-of-place transforms
• Natively called from C, includes wrapper for Fortran, wrappers available for Python, Java, Perl, Ruby, Delphi and more...
• Support for parallel programming
• Binaries available for Windows
• Source code available for compilation on exotic platforms
TYPE FFTInstr
 INTEGER(KIND=8) :: plan
 INTEGER :: dir
 REAL :: Norm
END TYPE FFTInstr

! Interface to the FFTW subroutine
!**
SUBROUTINE FFT(instr, rho)
**
!
USE SF_Module
IMPLICIT NONE
TYPE(FFTInstr) :: instr
REAL, DIMENSION(:) :: rho

call sfftw_execute(instr%plan)
IF (instr%dir==-1) rho=rho/instr%norm

END SUBROUTINE FFT
SUBROUTINE MakeFFTPlan(NVox, rho, sf, dir, infastfft, instr)

USE SF_Module

IMPLICIT NONE

INTEGER, PARAMETER :: FFTW_FORWARD=+1, FFTW_BACKWARD=-1
INTEGER, PARAMETER :: INTEGER, PARAMETER :: FFTW_MEASURE=0, FFTW_ESTIMATE=64
INTEGER, PARAMETER :: INTEGER, DIMENSION(:) :: NVox
REAL, DIMENSION(:) :: rho, sf
INTEGER :: Method, dir
LOGICAL :: InFastFFT
TYPE(FFTInstr) :: instr

IF (InFastFFT) THEN
 Method=FFTW_MEASURE
ELSE
 Method=FFTW_ESTIMATE
ENDIF

instr%dir=dir

IF (dir==r2cFT) THEN
 call sfftw_plan_dft_r2c(instr%plan, size(NVox), NVox, rho, sf, method)
 instr%nrm=1.
ELSEIF (dir==c2rFT) THEN
 call sfftw_plan_dft_c2r(instr%plan, size(InNVox), InNVox, insf, inrho, method)
 instr%nrm=product(InNVox)
ENDIF

IF (instr%plan==0) CALL StopProgram('Error, cannot initiate the FFT routine.')

END SUBROUTINE MakeFFTPlan